117 research outputs found

    An algorithm and a core set result for the weighted euclidean one-center problem

    Get PDF
    Given a set A of m points in n-dimensional space with corresponding positive weights, the weighted Euclidean one-center problem, which is a generalization of the minimum enclosing ball problem, involves the computation of a point c A n that minimizes the maximum weighted Euclidean distance from c A to each point in A In this paper, given Δ > 0, we propose and analyze an algorithm that computes a (1 + Δ)-approximate solution to the weighted Euclidean one-center problem. Our algorithm explicitly constructs a small subset X ⊆ A, called an Δ-core set of A, for which the optimal solution of the corresponding weighted Euclidean one-center problem is a close approximation to that of A. In addition, we establish that \X\ depends only on Δ and on the ratio of the smallest and largest weights, but is independent of the number of points m and the dimension n. This result subsumes and generalizes the previously known core set results for the minimum enclosing ball problem. Our algorithm computes a (1 + Δ)-approximate solution to the weighted Euclidean one-center problem for A in O(mn\X\) arithmetic operations. Our computational results indicate that the size of the Δ-core set computed by the algorithm is, in general, significantly smaller than the theoretical worst-case estimate, which contributes to the efficiency of the algorithm, especially for large-scale instances. We shed some light on the possible reasons for this discrepancy between the theoretical estimate and the practical performance. © 2009 Informs

    Phase and TV Based Convex Sets for Blind Deconvolution of Microscopic Images

    Get PDF
    In this paper, two closed and convex sets for blind deconvolution problem are proposed. Most blurring functions in microscopy are symmetric with respect to the origin. Therefore, they do not modify the phase of the Fourier transform (FT) of the original image. As a result blurred image and the original image have the same FT phase. Therefore, the set of images with a prescribed FT phase can be used as a constraint set in blind deconvolution problems. Another convex set that can be used during the image reconstruction process is the Epigraph Set of Total Variation (ESTV) function. This set does not need a prescribed upper bound on the Total Variation (TV) of the image. The upper bound is automatically adjusted according to the current image of the restoration process. Both the TV of the image and the blurring filter are regularized using the ESTV set. Both the phase information set and the ESTV are closed and convex sets. Therefore they can be used as a part of any blind deconvolution algorithm. Simulation examples are presented. © 2015 IEEE

    Upper critical field in dirty two-band superconductors: breakdown of the anisotropic Ginzburg-Landau theory

    Full text link
    We investigate the upper critical field in a dirty two-band superconductor within quasiclassical Usadel equations. The regime of very high anisotropy in the quasi-2D band, relevant for MgB2_{2}, is considered. We show that strong disparities in pairing interactions and diffusion constant anisotropies for two bands influence the in-plane Hc2H_{c2} in a different way at high and low temperatures. This causes temperature-dependent Hc2H_{c2} anisotropy, in accordance with recent experimental data in MgB2_{2}. The three-dimensional band most strongly influences the in-plane Hc2H_{c2} near TcT_{c}, in the Ginzburg-Landau (GL) region. However, due to a very large difference between the c-axis coherence lengths in the two bands, the GL theory is applicable only in an extremely narrow temperature range near TcT_c. The angular dependence of Hc2H_{c2} deviates from a simple effective-mass law even near TcT_c.Comment: 12 pages, 5 figures, submitted to Phys.Rev.

    The spin-1/2 J1-J2 Heisenberg antiferromagnet on the square lattice: Exact diagonalization for N=40 spins

    Full text link
    We present numerical exact results for the ground state and the low-lying excitations for the spin-1/2 J1-J2 Heisenberg antiferromagnet on finite square lattices of up to N=40 sites. Using finite-size extrapolation we determine the ground-state energy, the magnetic order parameters, the spin gap, the uniform susceptibility, as well as the spin-wave velocity and the spin stiffness as functions of the frustration parameter J2/J1. In agreement with the generally excepted scenario we find semiclassical magnetically ordered phases for J2 < J2^{c1} and J2 > J2^{c2} separated by a gapful quantum paramagnetic phase. We estimate J2^{c1} \approx 0.35J1 and J2^{c2} \approx 0.66J1.Comment: 16 pages, 2 tables, 11 figure

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    Measurement of the View the tt production cross-section using eÎŒ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σttÂŻ) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σttÂŻ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σttÂŻ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented

    Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at sqrt [ s ] = 13TeV

    Get PDF
    A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb−1 of proton–proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at √s = 13 TeV. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions

    A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector

    Get PDF
    A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance

    Search for dark matter produced in association with a hadronically decaying vector boson in pp collisions at sqrt (s) = 13 TeV with the ATLAS detector

    Get PDF
    A search is presented for dark matter produced in association with a hadronically decaying W or Z boson using 3.2 fb−1 of pp collisions at View the MathML sources=13 TeV recorded by the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet compatible with a W or Z boson and with large missing transverse momentum are analysed. The data are consistent with the Standard Model predictions and are interpreted in terms of both an effective field theory and a simplified model containing dark matter

    Search for resonances in the mass distribution of jet pairs with one or two jets identified as b-jets in proton–proton collisions at √s=13TeV with the ATLAS detector

    Get PDF
    Searches for high-mass resonances in the dijet invariant mass spectrum with one or two jets identi-fied as b-jets are performed using an integrated luminosity of 3.2fb−1of proton–proton collisions with a centre-of-mass energy of √s=13TeVrecorded by the ATLAS detector at the Large Hadron Collider. Noevidence of anomalous phenomena is observed in the data, which are used to exclude, at 95%credibility level, excited b∗quarks with masses from 1.1TeVto 2.1TeVand leptophobic Z bosons with masses from 1.1TeVto 1.5TeV. Contributions of a Gaussian signal shape with effective cross sections ranging from approximately 0.4 to 0.001pb are also excluded in the mass range 1.5–5.0TeV
    • 

    corecore